Wissenschaftler der europäischen Kometen-Mission Rosetta haben die ersten Ergebnisse von sieben der elf Instrumente an Bord der Sonde veröffentlicht. Der extrem dunkle Komet Churyumov-Gerasimenko (67P/C-G) zeigt sich dabei als sehr heterogener Körper mit einer abwechslungsreichen Oberfläche, einer Koma mit Variationen und Gänsehaut-ähnlichen Strukturen, die die Forscher noch nicht erklären können.

- Die folgende Meldung basiert größtenteils auf der Pressemitteilung des Deutschen Zentrums für Luft- und Raumfahrt, DLR

Köln (Deutschland) - Wie das internationale Wissenschaftlerteam aktuell in einer (kostenfrei online zugänglichen) Sonderausgabe des Wissenschaftsjournals "Science" berichten, gehört Churyumov-Gerasimenko zu den dunkelsten Objekten in unserem Sonnensystem - die Reflexion des Sonnenlichts, die das Spektrometer VIRTIS (Visible, Infrared and Thermal Imaging Spectrometer) festgestellt hat, beträgt gerade einmal sechs Prozent. Dies könnte daran liegen, dass die Oberfläche des Kometen mit dunklen Materialien wie Eisensulfide, dunkle Silikate und kohlenstoffreichen Verbindungen angereichert ist.
rosetta
© ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/RSSD/INTA/UPM/DASP/IDA & Gordan Ugarkovich (Earth); Robert Vanderbei, Princeton Univ (Moon); ESA/Rosetta/NAVCAM (67P/C-G)Detailansicht des Kometen.

"Sehr wahrscheinlich ist auch nur wenig oder überhaupt kein Wassereis an der unmittelbaren Oberfläche des Kometenkerns", sagt DLR-Wissenschaftlerin Dr. Gabriele Arnold vom VIRTIS-Team. "Es ist aber zweifelsohne im Inneren Wassereis vorhanden." Bei seiner Reise durch das Sonnensystem hat Churyumov-Gerasimenko wohl einen Großteil des Wassereises in seinen äußeren Schichten durch Sublimation verloren.


Kommentar: Das ist eine Annahme, dass sich im Innern des Kometen sich Eis befindet um die Theorie zu stützen, dass wenn Kometen sich der Sonne nähern ein Schweif entsteht und dabei "enteisen" durch die Hitze der Sonne. Wahrscheinlicher ist es, dass überhaupt kein "Eis" und "Neuschnee" vorhanden ist, da Kometen keine "dreckigen Schneebälle sind". Laut der "Elektrisches Universum"-Bewegung sind Kometen reguläre Felsbrocken, die durch elektrische Entladungen einen Schweif entwickeln. Hierbei bildet der Komet einen 'Kurzschluss' zwischen der Sonne (positiv geladen) und dem äußeren Sonnensystem (negativ geladen), wobei der Schweif lediglich der sichtbare Teil des Ionen-Stroms ist. Das nachgewiesene Wasser rund um Kometen entsteht durch Sputtering von negativ geladenen Sauerstoff-Ionen aus dem Silikat-haltigen Mineralien, die sich mit dem Wasserstoff des Ionen-Stroms bzw. Sonnenwind verbinden. Im Koma eines Kometen können daher einige Tonnen Wasser pro Tag gebildet werden.


rosetta
© ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/RSSD/INTA/UPM/DASP/IDA & Gordan Ugarkovich (Earth); Robert Vanderbei, Princeton Univ (Moon); ESA/Rosetta/NAVCAM (67P/C-G)Grafischer Vergleich der Helligkeit von Erde, Mond und Churyumov-Gerasimenko
"Eine der interessantesten Entdeckungen ist aber der Nachweis von langkettigen Kohlenwasserstoffverbindungen", sagt die Planetenforscherin. Damit konnte die Existenz solcher organischen Verbindungen - Vorläufer von Aminosäuren - auf einer Kometenoberfläche festgestellt werden - von der Erde aus ist dies nicht möglich. "Die Bildung solcher Verbindungen erfordert komplexe Reaktionen unter Wirkung von UV- oder kosmischer Strahlung bei tiefen Temperaturen, wie sie nur in den äußeren Regionen des Sonnensystems jenseits des Neptunorbits vorherrschen." Churyumov-Gerasimenko könnte für die Planetenforscher somit ein Blick in die frühen Phasen unseres Sonnensystems bedeuten.

Dass vor allem Wasser, Kohlendioxid und Kohlenmonoxid die Koma des Kometen bilden, ergaben die Messungen mit ROSINA, einem Massenspektrometer, das Moleküle und Ionen selbst im Hochvakuum der Kometenkoma mit höchster Empfindlichkeit nachweisen kann. "Interessant ist, dass sich das Massenverhältnis dieser drei Bestandteile über einen Kometentag hinweg stark ändert", erläutert DLR-Kometenforscher Dr. Ekkehard Kührt aus dem ROSINA-Wissenschaftlerteam in der Pressemitteilung des DLR. Während der Rotation des Kometen erfasste das Massenspektrometer mal einen deutlich höheren Anteil an Wassermolekülen, mal ein höheren Anteil an Kohlendioxid-Molekülen. "Das deutet darauf hin, dass die Eise, aus denen die Gasmoleküle stammen, ungleich im Kern verteilt sind." Im weiteren Verlauf der Mission soll herausgefunden werden, ob diese Heterogenität ein Ergebnis der Entstehung des Kometen vor vielen Milliarden Jahre ist oder ob spätere Differenzierungsprozesse dafür verantwortlich sind.


Kommentar: Sehen sie dazu den letzten Kommentar.


Bild
© ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDASchaubild der abwechslungsreichen Kometenoberfläche.
Die Auswertung der OSIRIS-Kamera zeigte, wie unterschiedlich die verschiedenen Regionen des Kometen strukturiert sind. Rund 70 Prozent der Kometenoberfläche sind bereits erfasst worden - die bisher noch nicht abgebildete südliche Hemisphäre ist noch nicht ausreichend beleuchtet. Insgesamt unterschiedliche 19 Regionen stellten die Wissenschaftler fest und benannten sie nach ägyptischen Gottheiten. Grob kategorisiert ergaben sich bei der Auswertung der Kamera-Bilder fünf dominierende verschiedene Oberflächentypen: die staubbedeckten Gebiete, bröckeliges Material, großflächige Vertiefungen, glattes Gelände und freiliegende kompakte Strukturen. "Die Oberfläche des Kometen ist extrem abwechslungsreich und keineswegs einheitlich", sagt DLR-Kometenforscher Kührt. Zu sehen sind auf den OSIRIS-Aufnahmen auch dünenähnliche Wellen oder auch Gänsehaut-ähnliche Erhöhungen mit einem Durchmesser von rund drei Metern - deren Entstehungsprozess muss allerdings noch untersucht und erklärt werden.

rosetta
© ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDADie Gänsehaut des Kometen.
Rätselhaft bleibe auch noch die Entstehung des ungewöhnlich geformten Kometenkörpers. Der doppelkernige Komet hat einen Kopf sowie einen größeren Körper - beide Bestandteile sind mit einem schmalen Hals miteinander verbunden.

Demnach könnte es sein, dass zwei einzelne Kometen einst aneinander geschwebt und eine Einheit gebildet haben. Möglich wäre aber auch, dass der dünne Hals durch Erosion entstanden ist und so aus einem Kometen scheinbar zwei "Körperteile" entstanden sind. Deutlich ist bisher auf den OSIRIS-Bildern zu sehen, dass der Grat zwischen den beiden Kometenteilen die bisher aktivste Zone ist, in der Gas ausströmt und Staubteilchen ins All reißt.

rosetta
© ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDAAktivität auf dem Kometen.
"Wir werden die bisher erfassten Daten von der Annäherung, dem Orbit und der Landung weiterhin analysieren und sicherlich noch mehr über Churyumov-Gerasimenko und somit über die Entstehung unseres Sonnensystems erfahren", ist sich Kometenforscher Dr. Ekkehard Kührt vom DLR-Institut für Planetenforschung sicher.

Noch stehen die Wissenschaftler der Kometenmission Rosetta am Anfang mit ihrer Auswertung aller Daten, die die insgesamt 21 Instrumente auf Muttersonde und Lander Philae aus dem All gesendet haben. "Zurzeit analysieren und diskutieren wir bereits die nächsten Daten", sagt DLR-Kometenforscher Dr. Ekkehard Kührt, der die wissenschaftlichen Beteiligungen des DLR an der Rosetta-Mission leitet abschließend. "Churyumov-Gerasimenko hat noch Vieles, was es zu entschlüsseln gilt."

- Die Artikel der online kostenfrei zugänglichen Science-Sonderausgabe finden Sie HIER

grenzwissenschaft-aktuell.de / dlr.de